1 Watt SIP Single Series DC/DC Converters

Features
- High Isolation, 3000 VDC
- Operating Range of 4.5 to 5.5 Volts
- Semi-Regulated 1 Watt Outputs
 - 5, 12, 15 and 6.5, 7, 14, 17, 24 Volt Outputs
- Simple Four Terminal Operation
- Small SIP package, Fits in 0.19 sq.in. of PCB Area
- Low Noise Operation
- 5 Year Warranty
- RoHS Compliant

Description
The CALEX SIP is specifically designed to provide nonstandard output voltages and isolation for 5 volt digital systems. The series provides semi-regulated outputs of 5, 6.5, 12, 15, and 24 volts for directly driving your circuits or 7, 14 and 17 volt outputs for driving three terminal regulators.

The high efficiency operation of typically 74% for a 12 volt output means efficient use of your system power.

Easy four terminal operation makes using the converter a snap. Just plug it in and you are ready to solve those nasty analog problems that arise when only 5 volt digital power is available in your system.

RoHS Compliant:
RoHS Compliance means conformity to EU Directive 2002/95/EC of 27 January 2003, on the restriction of the use of certain hazardous substances in electrical and electronic equipment, lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls, and polybrominated diphenyl ethers are not present in quantities exceeding the following maximum concentrations in any homogeneous material, except for applicable exemptions.

0.1% (by weight of homogeneous material) lead, mercury, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ethers, or 0.01% (by weight of homogeneous material) cadmium. The RoHS marking is as follows:

1 Watt Sip Series Block Diagram

Input Parameters

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Range</td>
<td>MIN 4.5</td>
<td>MAX 5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VDC</td>
</tr>
<tr>
<td>Reflected Ripple (1)</td>
<td>TYP 50</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA P-P</td>
</tr>
<tr>
<td>Input Current</td>
<td>Full Load</td>
<td>TYP 207</td>
<td>255</td>
<td>261</td>
<td>243</td>
<td>248</td>
<td>250</td>
<td>257</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>No Load</td>
<td>TYP 20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Efficiency</td>
<td>TYP 69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>74</td>
<td>74</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>TYP 350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
</tbody>
</table>

Output Parameters

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TYP 5.00</td>
<td>6.500</td>
<td>7.00</td>
<td>12.00</td>
<td>14.00</td>
<td>15.00</td>
<td>17.00</td>
<td>24.0</td>
<td>VDC</td>
</tr>
<tr>
<td></td>
<td>MAX 5.25</td>
<td>6.825</td>
<td>7.35</td>
<td>12.60</td>
<td>14.70</td>
<td>15.75</td>
<td>17.85</td>
<td>25.2</td>
<td>VDC</td>
</tr>
<tr>
<td>Output Voltage, No Load</td>
<td>TYP 7</td>
<td>9</td>
<td>10</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>24</td>
<td>31</td>
<td>VDC</td>
</tr>
<tr>
<td>Rated Load Range</td>
<td>MIN 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>mA</td>
</tr>
<tr>
<td>Load Regulation (3)</td>
<td>75% - 20% Load</td>
<td>TYP +8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>75% - 100% Load</td>
<td>TYP -5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Line Regulation (4)</td>
<td>TYP 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% / %</td>
</tr>
<tr>
<td>Noise, Peak - Peak (1)</td>
<td>TYP 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mV P-P</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>TYP 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Short Circuit Protection to Common (5)</td>
<td>Momentary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Momentary</td>
</tr>
</tbody>
</table>

Notes

- All parameters measured at Tc = 25°C, 5.00V input voltage, full rated load and a 10µF solid tantalum capacitor connected across the input and output pins, unless otherwise noted. Refer to the CALEX Application Notes for the definition of terms, measurement and other information.

- Noises is measured per CALEX Application Notes. Measurement bandwidth is 20 MHz. Input Reflected Ripple and output noise are measured with a 10µF tantalum capacitor connected across the input and output pins.

General Information

The 1 Watt SIP series provides isolated semi-regulated outputs of 5, 6.5, 7, 12, 14, 15, 17, and 24 VDC. The high efficiency low noise push-pull design operates at 350 kHz which reduces to a minimum your external filter requirements.

The converter is packaged in a non-conductive plastic case and can be water washed after assembled to your main PC board.

Applying The Input

Figure 1 shows the recommended input connections for the 1 Watt Output SIP series. This series is only protected for momentary output short circuits to common so a fast acting fuse is recommended to protect the input circuit. It should not be omitted as it serves to prevent unlimited current from flowing in the case of an overcurrent at the load.

C1 may not be required when the power source is less than 2° from the unit. The source impedance should be less than 0.01 Ω.

Output Voltage Accuracy measured at 75% of maximum Rated Load.

Load Regulations measured relative to 75% of maximum Rated Load Current. See Output Voltage vs. Output Load Curves.

Line Regulation is for a 1.0% change in Input Voltage.

Use input fuse for protection. See Applying the Input.

The case Thermal Impedance is specified as the case temperature rise over ambient per package watt dissipated.

Specifications subject to change without notice.

Water Washability - Calex DC/DC converters are designed to withstand most solder/wash processes. Careful attention should be used when assessing the applicability in your specific manufacturing process. Converters are not hermetically sealed.

Figure 1. 1 Watt SIP Series Typical Application

0.5 ohm over the frequency range of DC to 350 kHz. A 10µF solid tantalum capacitor will satisfy the requirements for C1, and should be within 2° of the converter.
1 Watt SIP Single Series DC/DC Converters

Very Low Noise Input Circuit

Figure 2 shows a very low noise input circuit that may be used with the converters. This circuit will reduce the input reflected ripple current to less than 5 mA peak to peak. L1 should be sized to handle the maximum DC current of your application. C1 must be used if L1 is required in the circuit.

![Circuit Diagram]

This circuit will reduce the input reflected ripple current to less than 5 mA peak to peak. See the discussion in the text for selecting C1 and L1.

Applying The Output

Figure 1 shows the typical output connection for the converter. C2 is required to filter the output. It must be 10μF minimum and can be made up of from the bypass capacitors already used in your application. Increasing C2 will lower the output noise.

Operation With Light Loads

This converter uses a semi-regulated design. The output voltage will vary as the load is changed, increasing as the load is decreased. See the Output Voltage vs. Output Load curve.

Operation With Changing Input Voltage

The output will change proportionally to a change in the input voltage. The typical output voltage change is 1.2% per % change in input voltage.

Low Noise Output Circuit

The circuit shown in Figure 3 can be used to reduce the output noise to below 4 mV p-p over a 20 MHz bandwidth. Size inductor L2 appropriately for the maximum expected load current. All the ground connections must be as short as possible back to the CMN pin. The filter should be placed as close as possible to the converter, even if your load is at some distance.

![Circuit Diagram]

This circuit can reduce the output noise to below 4mV P-P over a 20 MHz bw. Size L2 for the maximum expected load current. Place as close as possible to the converter.

Negative Outputs

A negative output voltage is obtained by connecting the +Output pin to the low side of the load, and taking the negative output from the CMN pin of the converter.

Grounding

The input and output sections are fully floating and isolated from each other. They may be operated fully floating or with a common connection between the input and output.
Temperature Derating

The 1 Watt Output SIP series can be operated up to a +85°C case temperature. Case temperature can be roughly calculated from ambient by knowing that the case temperature rise is approximately 58°C per package watt dissipated.

For example: If a 5S12.080SIP is delivering 0.9 watts at 5V input, at what ambient could it expect to run with no additional cooling such as moving air?

Efficiency is approximately 74% which leads to an input power of 1.2 watts. The internal power loss is 1.2 - .9 = 0.30 watts. The case temperature rise will be 0.30W x 58°C/W = 17°C. This number is subtracted from the maximum case temperature rating of 85°C to get 68°C, which is the maximum ambient operating temperature.

This example calculation is for an application with no extra air flow for cooling. Extra cooling air will greatly effect the maximum ambient temperature. Exact internal power loss depends upon the efficiency, input voltage, and load in the application.

The above example is a rough approximation to the maximum ambient temperature. Because of the difficulty of defining ambient temperature, these calculations should be verified by actual measurement before committing to a production design.