Output Voltage Trim

Output voltage trim allows the user to increase or decrease the output voltage set point of a module. The output voltage can be adjusted by placing an external resistor (Radj) between the Trim and +Vout or -Vout terminals. By adjusting Radj, the output voltage can be changed by ±10% of the nominal output voltage.

A 10K, 1 or 10 Turn trimpot is usually specified for continuous trimming. Trim pin may be safely left floating if it is not used.

Connecting the external resistor (Radj-up) between the Trim and -Vout pins increases the output voltage to set the point as defined in the following equation:

\[\text{Radj-up} = \frac{(33 \times \text{Vout}) - (30 \times \text{Vadj})}{\text{Vadj} - \text{Vout}} \]

Connecting the external resistor (Radj-down) between the Trim and +Vout pins decreases the output voltage set point as defined in the following equation.

\[\text{Radj-down} = \frac{(36.667 \times \text{Vadj}) - (30 \times \text{Vout})}{\text{Vout} - \text{Vadj}} \]

Vout = Nominal Output Voltage
Vadj = Adjusted Output Voltage
Units: VDC/KΩ

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low.

To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal.

The switch can be an open collector or equivalent.

A logic low is -1V to 1.0V.
A logic high is 2.5V to 5.5V.

The maximum sink current at the on/off terminal (Pin 4) during a logic low is -100 µA.
The maximum allowable leakage current of a switch connected to the on/off terminal (Pin 4) at logic high (2.5V to 5.5V) is 5 µA.